

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

OBJECTIVES:

The course should enable the student:

• To understand interrelationships, principles and guidelines governing architecture
and evolution over time.

• To understand various architectural styles of software systems.

• To understand design patterns and their underlying object oriented concepts.

• To understand implementation of design patterns and providing solutions to real
world software design problems.

• To understand patterns with each other and understanding the consequences of

combining patterns on the overall quality of a system.

UNIT-I:

Envisioning Architecture

The Architecture Business Cycle, What is Software Architecture, Architectural patterns,

reference models, reference architectures, architectural structures and views.

Creating and Architecture Quality Attributes, Achieving qualities, Architectural styles and

patterns, designing the Architecture, Documenting software architectures, Reconstructing

Software Architecture.

UNIT-II:

Analyzing Architectures

Architecture Evaluation, Architecture design decision making, ATAM, CBAM

 Moving from One System to Many
Software Product Lines, Building systems from off the shelf components, Software architecture
in future.

UNIT-III:

Patterns

Pattern Description, Organizing catalogs, role in solving design problems, Selection and usage.

Creational Patterns

Abstract factory, Builder, Factory method, Prototype, Singleton

UNIT-IV:

Structural Patterns

Adapter, Bridge, Composite, Decorator, Façade, Flyweight, PROXY.

UNIT-V:

Behavioral Patterns

IV Year – I Semester
L T P C

4 0 0 3

Chain of responsibility, command, Interpreter, iterator, mediator, memento, observer, state,

strategy, template method, visitor.

UNIT-VI:

Case Studies

A-7E – A case study in utilizing architectural structures, The World Wide Web - a case study in

Interoperability, Air Traffic Control – a case study in designing for high availability, Celsius

Tech – a case study in product line development.

A Case Study (Designing a Document Editor): Design Problems, Document Structure,

Formatting, Embellishing the User Interface, Supporting Multiple Look-and-Feel Standards,

Supporting Multiple Window Systems, User Operations, Spelling Checking and Hyphenation.

TEXT BOOKS:

 1. Software Architecture in Practice, second edition, Len Bass, Paul Clements & Rick

 Kazman, Pearson Education, 2003.

 2. Design Patterns, Erich Gamma, Pearson Education, 1995.

REFERENCE BOOKS:

 1. Beyond Software architecture, Luke Hohmann, Addison wesley, 2003.

 2. Software architecture, David M. Dikel, David Kane and James R. Wilson, Prentice Hall

 PTR, 2001

3. Software Design, David Budgen, second edition, Pearson education, 2003

4. Head First Design patterns, Eric Freeman & Elisabeth Freeman, O’REILLY, 2007.

5. Design Patterns in Java, Steven John Metsker & William C. Wake, Pearson education,

 2006

6. J2EE Patterns, Deepak Alur, John Crupi & Dan Malks, Pearson education, 2003.

7. Design Patterns in C#, Steven John metsker, Pearson education, 2004.

8. Pattern Oriented Software Architecture, F.Buschmann & others, John Wiley & Sons.

